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Abstract
Accurate prediction of future urban land demand is essen-
tial for effective urban management and planning. However, 
existing studies often focus on predicting total demand 
within an administrative region, neglecting the spatiotem-
poral heterogeneities and interrelationships within its sub-
regions, such as grids. This study introduces a dynamic 
spatiotemporal rolling prediction model (STRM) that inte-
grates historical trends, neighborhood status, and spatial 
proximity for spatially explicit prediction of urban land de-
mand at a grid level within an administrative region. STRM 
leverages historical urban land demand and proximity infor-
mation from neighborhood grids to predict future demand 
of the foci grid. By integrating history and neighborhood 
information into a deep forest model, STRM provides an 
approach for rolling predictions of grid-level urban land 
demand. Parameter sensitivity and structural sensitivity 
analyses of STRM reveal the impact of historical lags, neigh-
borhood size, and spatial proximity on urban land demand 
predictions. Application of STRM in Wuhan demonstrated 
the performance of STRM over a 17-year period (2000–
2017), with an average adjusted R2 of 0.89, outperforming 
other urban land demand prediction models. By predicting 
demand on a year-by-year basis, STRM effectively captures 
spatiotemporal heterogeneity and enhances the resolution 
of urban land demand prediction. STRM represents a shift 
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1  | INTRODUC TION

In recent decades, researchers have proposed various models to simulate urban growth and predict future urban 
development scenarios (Balmaceda & Fuentes, 2016; Batty et al., 2019; Cilliers et al., 2021). These models aim 
to address urbanization issues such as the heat island effect, landscape fragmentation and biodiversity loss (Gao 
et  al.,  2022; Xu et  al.,  2020; Ye et  al.,  2015). The growth pattern of urban is influenced by both macro-level 
urban land demand and micro-level spatial configuration, reflecting bottom-up and top-down regulatory pro-
cesses, respectively (Aquilué et al., 2017; Ke et al., 2018; van Vliet et al., 2017). Due to differences in biophysical, 
socioeconomic conditions, and historical urban development trends, urban land demand exhibits spatiotemporal 
heterogeneity across different sub-regions within a city (Yang, Tang, et al., 2023; Zhou et al., 2020). Although re-
cent studies have utilized statistical models and machine learning methods to estimate annual urban land demand, 
accounting for temporal variations, they often overlook the granular spatial heterogeneity of urban land demand 
within subregions (Ke et al., 2015; Noszczyk, 2018).

Spatiotemporal variations in urban land demand significantly influence the pattern and form of urban structure 
(van Vliet et al., 2017). Considering the spatial heterogeneity of urban land demand is crucial for accurately simu-
lating urban landscape patterns and changes. Effective methods to account for this heterogeneity include spatially 
dividing the study area into low-level administrative units or using clustering methods to partition the area into 
irregular sub-regions (Engelen et al., 2007; Schneider & Woodcock, 2008). However, these methods often treat 
sub-regions as independent entities, neglecting their spatial connections and interactions in urban development 
activities. Urban growth is a geographical phenomenon characterized by both temporal and spatial attributes. The 
historical context and development conditions of neighboring areas, along with regional proximity, are key factors 
affecting urban land demand (Tepe, 2023). Historical urban growth trends and current development conditions 
influence both present and future urban growth. Incorporating historical urban growth information into simula-
tions, such as through auto-correlation analysis, has been shown to enhance simulation and prediction accuracy of 
urban growth (Nahuelhual et al., 2012). Moreover, urban growth processes often exhibit spatial dependence and 
feedback between neighborhoods, with many studies demonstrating the impact of spatial dependencies on model 
performance. The self-organizing nature of urban growth suggests that growth in specific city areas is influenced 
not only by historical trends but also by the development trends of surrounding areas. This self-organizing feature 
provides theoretical support for simulating heterogeneous urban land demand by incorporating spatiotemporal 
dependency and neighborhood interactions.

This study proposes a spatiotemporal rolling prediction model (STRM) to address gaps in current urban land 
demand prediction models. STRM considers the impacts of spatiotemporal lag effect and spatial proximity on 
urban land demand. By a set of spatiotemporal parameters that represent spatiotemporal lags and spatial prox-
imity, STRM can predict grid-level urban land demand annually. These spatiotemporal parameters are calibrated 
through parameter and structure sensitivity analysis to enhance model performance. Based on these calibrated 
parameters, STRM provides reliable predictions of future urban land demand.

The application of STRM in Wuhan, China, demonstrates its potential to support urban land development and 
planning decisions. STRM aids decision-makers in better responding to urban development challenges, offering 
insights into the dynamic patterns and influencing mechanisms of urban growth, thereby providing more scientific 
and reliable support for urban planning and management decisions. The key scientific questions addressed in this 

from static macroscopic to dynamic microscopic prediction 
of urban land demand, offering valuable insights for future 
urban development and planning decisions.
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study are: (1) Can spatiotemporal lag in urban development and proximity information depict the spatiotemporal 
heterogeneity of grid-level urban land demand? (2) Can the proposed STRM effectively predict future urban land 
demand using spatiotemporal lag and proximity information?

2  | LITER ATURE RE VIE W

2.1 | Urban land demand predicts based on the CA framework

Urban growth simulation models developed based on CA have gained widespread adoption for their capability 
to simulate dynamic geographical phenomena through the incorporation of neighboring interactions (Cilliers 
et al., 2021; Stanilov & Batty, 2011). For instance, CLUE-S (Verburg et al., 2003), UrbanSim (Waddell, 2007), 
FUTURE (Meentemeyer et al., 2013), SLEUTH (Osman et al., 2016), FLUS (Liu et al., 2017), and PLUS (Liang 
et  al.,  2021) are designed to analyze and simulate dynamic urban changes, habitat evolution, and predict 
future urban growth patterns (Fisher-Gewirtzman & Blumenfeld-Liberthal,  2013; Tang et  al.,  2021; Yang 
et al., 2020).

These CA-based models follow a process consisting of two main procedures at the macro level, namely de-
mand prediction and space allocation (Aquilué et al., 2017). Predicting demand is often a prerequisite for spatial 
allocation, estimating the quantity of future urban growth. Researchers have conducted extensive research on 
“how to define urban land spatial allocation rules”, because this issue is the key to distinguishing the simulation 
performance of CA models. From the aspects of neighborhood configuration (Moore or von Neumann neighbor-
hoods), representation of spatial objects (polygons, regular grids, or patches) and randomness (usually achieved 
through Monte Carlo simulations), many improved conversion rules are proposed to make the simulated urban 
land landscape pattern more realistic (Liao et al., 2016; Mustafa et al., 2018; Zhai et al., 2020). However, research-
ers often neglect the improvement of the demand predicting part.

In terms of demand predicting, it mainly includes static and dynamic methods. Static methods include regres-
sion analysis, trend fitting, and neural networks, which are used to establish the connection between the quan-
tity of urban land and indicators such as population size, economic development, and industrial structure (Chen 
et al., 2014; Li & Yeh, 2001; Wu, 1997). Typical urban development models of this kind are RF-CA, ANN-CA and 
logistic-CA (Liu et al., 2023; Wang & Wang, 2022; Xu et al., 2021). Dynamic methods utilize models like system 
dynamics to express the dynamic feedback between policy, socioeconomic conditions and the quantity of urban 
land (Zhang et al., 2024). The urban land demand predicted by these models is further input into the spatial allo-
cation module to guide the micro-processes of urban land simulation from a macro perspective. To enhance the 
spatial allocation process, it is essential to optimize urban expansion simulation models with a focus on urban land 
demand. Similar to the spatial allocation process, current methods of predicting urban land demand over multi-
ple years often neglect temporal differences in demand. Additionally, methods that predict large-area demand 
frequently overlook the interactions between subregions. External models used to estimate urban land demand 
not only fail to account for spatiotemporal variations but also exhibit weak integration with the spatial allocation 
process. Consequently, these models do not effectively utilize spatialized urban land demand as a critical guiding 
factor (Cunha et al., 2021; Liu et al., 2020).

2.2 | Heterogeneity of urban land demand

Urban land demand at the macro level often fluctuates in response to economic development and population 
changes (Zhou et al., 2020). For instance, during periods of rapid economic growth and population expansion, the 
demand for urban land increases, whereas it decreases during economic downturns. Typically, a set of time series 
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data is employed to predict annual urban land quantities through statistical analysis or machine learning methods 
(Chen et al., 2019; Yang, Sun, et al., 2023). To capture temporal differences in urban land demand, a straightfor-
ward method is to use year-by-year estimates (Liu et al., 2020), which are then spatialized by specific allocation 
modules within urban growth simulation models.

However, urban land demand estimated using traditional models often fails to adequately address temporal and 
spatial variations. The spatiotemporal heterogeneity of urban land demand highlights geographical differences in 
urban development across different subregions within a city over time (Yang, Tang, et al., 2023). This demand is not 
uniformly distributed; it is typically higher in economically thriving and densely populated areas, such as urban cen-
ters, near commercial hubs, or in new development zones. Conversely, in remote towns and villages away from urban 
cores, the demand for urban land is generally lower. This uneven distribution both directly and indirectly influences 
the spatial allocation process, thereby shaping the landscape pattern of urban expansion (Morrill, 1970).

To address the spatial heterogeneity of urban land demand, modelers have traditionally divided study areas 
into administrative districts for urban expansion simulations at global, national, or economic zone scales, partition-
ing regions into countries, cities, and counties (Engelen et al., 2007; Huang et al., 2021). This approach often em-
ploys statistical relationships between socioeconomic factors and urban land development to estimate demand 
across large-scale regions. While effective for simulating the impact of different policy scenarios, this method can 
disrupt the spatial continuity of geographical elements subjectively.

At the city scale, researchers have developed various spatial partitioning methods to accommodate the het-
erogeneity of demand. For example, dividing a city into smaller administrative units—cities into counties, and 
counties into towns—allows for a more detailed consideration of urban land demand at different administrative 
levels (Seto et al., 2012). Although the heterogeneity of urban land demand at different administrative levels is 
considered, this approach may overlook subtle policy differences across these levels. Additionally, some research-
ers have adopted spatial clustering methods to segment the study area into irregular zones based on homogeneity 
in socioeconomic characteristics (Ke et al., 2015). While this method ensures that socioeconomic backgrounds are 
consistently represented, acquiring spatialized socioeconomic data in irregular areas poses significant challenges. 
Another division strategy involves establishing concentric rings from the city center outward, categorizing the 
city into regular zones (Ahasan & Güneralp, 2022; Yang, Sun, et al., 2023). This model accounts for micro-physical 
changes in urban land demand over time and aligns well with micro-urban dynamics, facilitating integration with 
spatial allocation processes. However, it is primarily suited to plain urban areas that expand outward from the city 
center and may not adequately capture the complex interactions among different urban zones.

2.3 | Spatiotemporal lag effect and proximity in urban growth

Previous research has extensively demonstrated the effectiveness of data-driven empirical methods in simulat-
ing urban growth processes (Fu et al., 2018; Lauf et al., 2012; Losiri et al., 2016). Urban development suitability 
maps, an essential input to the spatial allocation process, are typically created by establishing regression relation-
ships between urban development and various biophysical and socioeconomic factors (Castella & Verburg, 2007). 
These relationships significantly influence the effectiveness of simulation results by impacting the transition rules 
used in the models (Liang et al., 2021). However, many studies also highlight the importance of historical develop-
ment trends, neighborhood relationships, and proximity determined by distance factors as critical elements in 
predicting urban land demand (Deng & Srinivasan, 2016; Ferdous & Bhat, 2013; Iacono et al., 2008).

Including historical development trends in urban land demand estimates is crucial due to the inertial mech-
anism of urban development, where future urban land development is influenced by past activities (Nahuelhual 
et al., 2012; Tepe & Guldmann, 2020). However, changes in urban development may exhibit a temporal lag, be-
coming apparent only after a significant period (Bhat et  al.,  2015; Huang et  al.,  2009). Effectively accounting 
for dynamic changes in historical development in regression models can significantly improve the simulation of 
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large-scale land use changes (Tepe & Guldmann, 2017, 2020). For instance, incorporating data from lagged periods 
into a logistic autoregressive model can accurately capture the nonlinear dynamics of urban development (Tepe 
& Guldmann, 2020).

Neighborhood relationships also play a critical role in simulating urban growth, particularly in influencing the 
neighborhood effect in CA models. Urban land demand is generally higher in areas adjacent to already urbanized 
regions, in line with the first law of geography (Goodchild,  2004; Tobler,  2004). Urban development typically 
spreads outward from urban centers, connecting new urban areas to existing ones. This spatial diffusion of urban 
growth, with its pronounced lag effect, prioritizes land closest to urbanized areas for development. Conversely, 
regions like distant suburbs have a lower likelihood of urban development.

Additionally, distance-related variables are crucial for representing spatial proximity, and they play a vital role 
in regulating auto-correlation and heterogeneity in spatial modeling. Researchers have explored the potential of 
using these variables or rules to better understand urban development phenomena (Arsanjani et al., 2013; Liao 
& Wei, 2014; Ou et al., 2017). Proximity to urban centers, key infrastructure, important transportation hubs, and 
already urbanized areas typically correlates with increased socio-economic activities and higher population den-
sity, thereby escalating urban land demand. Furthermore, examining the interplay between scale and proximity is 
fundamental for understanding urban land patterns. Researchers also investigate this relationship to discuss how 
proximity influences urban land use patterns across different scales, highlighting its critical role in spatial dynam-
ics (Munroe & Müller, 2007; Li et al., 2022).

Although urban land demand estimates based on traditional models consider temporal and spatial divisions, as 
well as the effects of spatiotemporal lag and proximity, they still estimate demand independently for each area. 
This approach often fails to account for the varied impacts of environmental changes, such as historical trends and 
neighborhood conditions, across different regions. Therefore, effectively capturing spatiotemporal heterogeneity 
requires predictions of urban land demand that integrate historical trends, neighborhood status, proximity, and 
the interactions among areas at various scales. This comprehensive approach ensures a more accurate reflection 
of complex urban dynamics.

3  | MATERIAL S AND METHODS

3.1 | Study area

The study area is Wuhan, located in Hubei Province, China, situated between 113°41′ E–115°05′ E and 
29°58′ N–31°22′ N. Positioned in the eastern part of the Jianghan Plain and within the middle reaches of the 
Yangtze River, Wuhan covers an area of 8569.15 km2. This region is notably marked by the convergence of the 
Yangtze and Han Rivers in its central areas, a unique geographical feature that has significantly influenced its 
urban development (see Figure 1). From 2010 to 2020, Wuhan's permanent population increased from 9.7853 
million to 12.4477 million, a rise of 27.21%, while its built-up area expanded from 475 to 812.39 km2, an increase 
of 71.03% (China S. S. B., 2010, 2020). This rapid expansion of urban land has outpaced population growth, pre-
senting various urban challenges. Addressing these issues necessitates scientific regulation to effectively manage 
Wuhan's future urbanization paths. Therefore, conducting a spatiotemporal demand prediction for urban land 
growth in Wuhan is essential for promoting sustainable urbanization.

3.2 | Data and preprocessing

Urban land data for the study area, covering the period from 1990 to 2017, were interpreted by Gong Peng using 
the Google Earth Engine (GEE) platform, which utilized Landsat satellite images and auxiliary data. The overall 
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interpretation accuracy exceeds 90% (Gong et al., 2020). Water bodies in the study area were extracted from 
the global land use/land cover data in 2020 produced by ESRI. Additionally, this study identified ten environment 
variables that potentially influence urban land development. The data sources and calculation methods for these 
variables are detailed in Table 1.

The study area is divided into regular grids, and urban land demand of each grid is defined as the proportion of 
urban land area in the grid with water bodies excluded:

F I G U R E  1 Location of the study area (Wuhan City, Hubei Province, China).
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where �(d, t) represents the proportion of urban land in a grid i with a side length of d at time t (observations), 
where 0 ≤ �(d, t) ≤ 1. S represents the area of the regular grid unit, calculated as d × dm2. Sb represents the area 
of urban land in the grid unit. Sw represents the area of the water bodies in the grid unit. We assumed that areas 
other than water bodies all can be converted into urban land. There are grids that are all water bodies, i.e., S = Sw.  
Therefore, to ensure the denominator of Equation  (1) is meaningful, the urban land proportion of these grids 
has been assigned to 0, that is �(d, t) = 0. These water-filled grids are excluded from further urban land demand 
prediction.

Figure  2 exemplifies the spatial distribution of the normalized environment variables in Table  1 within a 
grid of 1 × 1 km

2 size. Details on how �(d, t) and the environment variables were calculated are provided in 
Appendix A.

(1)𝜂(d, t) =
Sb

S − Sw
=

⎧
⎪⎪⎨⎪⎪⎩

1, if Sb=S−Sw or Sb=Sw =
S

2

A, if S>Sb+Sw , 0<A<1

0, if Sb=0 or S=Sw

, S ≥ Sb + Sw , S > 0, Sb ≥ 0, Sw ≥ 0

F I G U R E  2 Environment variables that influence urban land demand.
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3.3 | Spatiotemporal rolling prediction model (STRM) of urban land demand

3.3.1 | Parameters designation in STRM

At time t, urban land demand in grid i is predicted using STRM as Equation (2):

where qi(d, t, r) represents the urban land demand in grid i with side length d at a specific year t, r represents 
the neighborhood size of the grid, k denotes the lag period (0 < k ≤ T). T is the maximum lag period (T = 10 in 
this study). Ωr is the set of grid cells centered at the focal grid i and within the radius r of the Moore neighbor-
hood. Qt−k,d,Ωr

 represents a vector composed of the urban land demand in grid units within Ωr at time t − k, and Dd,i 
represents a vector composed of the environment variables in grid i. f  represents a mapping function that can be 
linear regression, neural network, or random forest, etc.

STRM examines the impact of spatiotemporal lag effect and spatial proximity on urban land demand. It assumes 
that, at any moment, the urban land demand in a grid is influenced by the historical urban land demand within that 
grid, as well as within a certain neighborhood range, alongside the environment variables of the focal grid. Based 
on this assumption, a set of parameters (see Table 2) is utilized to characterize the response of urban land demand 
to different spatiotemporal heterogeneous environment.

In the temporal dimension, a maximum lag period of 10 years is defined, denoted as k. For instance, when the 
lag period is 10 years, STRM extracts urban land demand data for a historical period of 10 years form the focal grid 
and the neighborhood grid. In the spatial dimension, five neighborhood sizes (denoted as r) and five grid sizes (de-
noted as d) are defined. Additionally, the environment variables listed in Table 1 were incorporated into the model 
as factors of proximity to the focal grid. When the neighborhood of the focal grid extends beyond the boundary 
of study area, the values of environment variables in these grids outside the study area are set to 0.

It should be noted that when exploring the impact on spatiotemporal demand prediction, proximity includes 
two aspects: the proximity of the focal grid's own environment variables, as well as the proximity of urban land 
demand in the surrounding neighborhood, can be uniformly characterized by the size of the scanning window. This 
will be discussed in detail in Section 4.1.3.

3.3.2 | Quantitatively construct the spatiotemporal input data of STRM

The input data of STRM primarily consist of the urban land demand vector Q from the historical period for both 
the focal grid and its neighborhood grids, as well as the vector D representing the environment variables of the 
focal grid alone. Figure 3 illustrates the calculation steps for vectors Q and D. The steps are as follows:

(2)qi(d, t, r) ∼ f
(
Qt−1,d,Ωr

,Qt−2,d,Ωr
, … ,Qt−k,d,Ωr

;Dd,i

)

TA B L E  2 Parameter design and description in STRM.

Dimension Parameters Value range Unit Description

Temporal 
dimension

Lag Period (k) 1, 2, 3, 4, 5, 6, 
7, 8, 9, 10

Year Determines the duration of temporal lags 
in STRM.

Spatial 
dimension

Neighborhood Size (r) 0, 1, 2, 3, 4 – Determines the size of the Moore 
neighborhood (N), calculated as N = 2 × r + 1, 
where r = 0 indicates no neighborhood, r = 1 
represents a Moore neighborhood within the 
3 × 3 range, and so on.

Grid Size (d) 1, 2, 3, 4, 5 km Represents the size of the grid unit.
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1.	 Parameter setting. Modelers should set the parameters based on Table  2, including lag period, neighbor-
hood size, and grid size. For example, one can choose a set of parameters as shown in Figure  3, where 
the lag period is 3 years, the neighborhood size is 3, and the grid size is 2 km.

2.	 Iterated scanning. As shown in Figure 3, assume that the prediction year of the model is 1999 + k . At this 
time, a 3 × 3 scanning window is constructed with a non-empty focal grid i as the center ti extract the 
urban land demand dataset from 1990 to 1999 + k − 1. Grid that are all occupied by water bodies are ex-
cluded from scannung. The scanning window is numbered from ① to ⑨ if the neighborhood size is 3 × 3,  
as exemplified in Figure 3. Data from grid ① in the history years from 1990 to 1999 + k − 1 forms the first 
vector. Data from neighborhood grids numbered ② to ⑨ are processed similarly. After completing the 
neighborhood scanning iteration, STRM concatenates the nine vectors obtained to construct the vector 
Q for the focal grid i. Vector D is obtained by concatenating the ten environmental factors corresponding 
only to the focal grid i.

3.	 Concatenating parameter values. Connect the vectors Q and D obtained in the previous step to complete the 
extraction of spatiotemporal information for grid i. The scanning window then moves one grid unit at a time, 
extracting values from top to bottom and left to right, until it encompasses all grids in the study area. It should 
be noted that this study also discusses cases where the influence of environment variables is not considered. In 
such cases, the extraction process for spatiotemporal information does not include the connection of vectors Q 
and D, the scanning window only fetches the vector Q.

3.3.3 | Mapping function selection and rolling prediction processes

If the environment variables are not included in the prediction process, STRM functions similarly to a spati-
otemporal autoregressive model (Harris et  al.,  2017). However, when these variables are incorporated, STRM 

F I G U R E  3 Extraction of spatiotemporal neighborhood information.
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transforms into a structure akin to a mixed spatial autoregressive model (Qin & Lei, 2021). The structure of STRM 
exhibits significant high-dimensional and complex nonlinear characteristics. For instance, with a neighborhood 
size of r = 4 and a temporal lag of k = 10, the model's input vector encompasses 820 elements, calculated as 
10 × (2 × 4 + 1) + 10. Traditional spatial statistical models and conventional machine learning models may not be 
capable of addressing such a complex structure.

Deep learning approaches can well address nonlinear relationships in data, making them capable of capturing 
spatial second-order relationships and nonlinear associations in geographic data. The deep forest, a deep learning 
model based on decision trees is one such method initially introduced by Zhou (Zhou & Feng, 2019). This model 
primarily comprises two components: multi-grained scanning and cascaded forests, which facilitate the compre-
hensive extraction of feature information from high-dimensional data and efficient management of large-scale 
datasets. Compared to traditional machine learning approaches, the deep forest model has fewer hyperparam-
eters and offers enhanced training efficiency (He et al., 2018). Therefore, this study chooses to utilize the deep 
forest model as the mapping function f .

In STRM, the dependent variable, which is urban land demand in a grid, is a continuous variable with values 
ranging from 0 to 1. Here, 1 indicates that the entire grid is urban land with water bodies excluded, and 0 signifies 
no urban land within the grid. By extracting spatiotemporal neighborhood information from all grids, we construct 
the dataset and train the deep forest model to predict future urban land demand for each grid on a rolling basis, 
as depicted in Figure 4.

F I G U R E  4  Implementation process of STRM model.
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The study area is divided into regular grids of size d km. Urban land demand and the averages of environment 
variables within each grid are calculated annually throughout the study period (1990–2017 in this study). Based on 
the specified temporal lag k, the study period is divided into a model training period and a model validation period. 
We assume that t1 is the initial year (1990 in this study) and te is the end year (2017 in this study) for model training 
and validation in the study area. The beginning year to be predicted is ts (ts = t1 + k) in the validation process. For 
model training, urban land demand within the focal grid of the scanning window serves as the dependent variable. 
Independent variables include the historical urban land demand of the focal grid and its neighboring grids, as well 
as the environment variables of the focal grid. Once model training is complete, rolling predictions for urban land 
demand within each grid for the upcoming years commence is conducted as Figure 4. First, STRM utilize data 
from ts, ts − 1, …, ts − k + 1 to predict the urban land demand for year ts + 1. Subsequently, STRM incorporates the 
predicted value for year ts + 1 into the model, together with data from ts, ts − 1, …, ts − k + 2 to predict the value 
for year ts + 2. This iterative process continues until the rolling prediction of urban land demand for all grids up 
to year te is completed. The Adjusted R2 values for the annual predictions are then calculated and recorded. The 
detailed calculation procedures for Adjusted R2 are outlined in Equation (S3) in Appendix B. If the model achieves 
the required validation accuracy, the next steps are initiated. However, if the model underperforms, its parameters 
are adjusted, and a retraining phase ensues.

4  | PAR AMETER AND STRUC TURE SENSITIVIT Y ANALYSIS OF STRM

4.1 | Parameter sensitivity analysis

4.1.1 | Temporal lags effects in urban land demand

Figure 5, using a grid size of 5 km as an example, illustrates the Adjusted R2 predicted by the model across all sample 
lag periods. Appendix C details the effects of temporal lag on model prediction accuracy for various grid sizes. The 
data from Figure 5 reveal that although the Adjusted R2 of STRM fluctuates with different neighborhood sizes, 
there is a consistent overall improvement in prediction accuracy as the lag period increases. Specifically, when the 

F I G U R E  5 Prediction accuracy of STRM model with different lag periods. (a) Moore neighborhood N = 3; (b) 
Moore neighborhood N = 5; (c) Moore neighborhood N = 7; (d) Moore neighborhood N = 9.
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lag period extends to 10 years, STRM achieves a notably higher Adjusted R2. Additionally, as the neighborhood size 
expands, the differences in STRM's predictions under various lag periods become more pronounced, with the ad-
vantage of a 10-year lag period increasingly evident. In contrast, shorter lag periods, such as 6 years or less, lead to 
greater fluctuations in STRM's Adjusted R2. These fluctuations underscore that longer lag periods enhance STRM's 
capacity to model the spatiotemporal non-stationarity of urban land demand development. Despite variations in 
predictive accuracy across different neighborhoods, the data clearly demonstrate that an extended lag period 
significantly improves STRM's predictive capabilities. This observation corroborates research by Kim et al. (2022), 
suggesting that incorporating historical urban changes provides insight into the variability of urban growth pro-
cesses, highlighting the importance of historical lag data for understanding urban land demand dynamics.

4.1.2 | Spatial lags characteristics of urban land demand

According to the temporal lags effects analysis results, we take the optimal lag parameter of 10 years (k = 10)  
as an example to illustrate the Adjusted R2 of STRM across different neighborhoods and grid sizes (refer to 
Figure 6). Complete prediction accuracy results under all spatial parameters are detailed in Appendix C. When 
the neighborhood size is small, for instance, r = 1 and r = 2, the overall Adjusted R2 generally increases as the 
grid size expands. However, with larger neighborhood sizes such as r = 3 and r = 4, the spatial lags characteristics 
of STRM exhibits edge effects, causing the Adjusted R2 to fluctuate with changes in grid size. These observed 
edge effects, which align with the research by Hu, may be attributed to increased variability in urban land de-
mand across a broader range of neighborhoods (Hu & Lo, 2007). Additionally, with a constant grid size, as the 
neighborhood size increases, the spatial of the data extracted by the scanning window also expands, leading to 
a continual decrease in overall Adjusted R2. Nevertheless, spatial lags effects (a specific manifestation of spatial 
dependence), being a localized feature, is subject to a specific distance threshold. According to Tobler's first law of 

F I G U R E  6 Prediction accuracy of STRM model with different neighborhood sizes. (a) Moore neighborhood 
N=3; (b) Moore neighborhood N = 5; (c) Moore neighborhood N = 7; (d) Moore neighborhood N = 9.
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geography, spatially proximate locations typically share similar distribution patterns and evolutionary processes 
(Tobler,  2004). Therefore, an increase in neighborhood size not only leads to considering the impact of more 
distant urban land demands but also reduces the intensity of spatial interactions. Within the statistical range of 
all spatial parameters, STRM exhibits the highest prediction accuracy overall when the grid size is 5 km and the 
neighborhood is configured as 3 × 3 (r = 1).

4.1.3 | Impacts of spatial proximity on urban land demand

The spatial proximity defined in this study includes two aspects. First, the distance between the urban land de-
mand of each grid in the scanning window and the urban land demand of the focal grid. This proximity character-
izes the range of neighborhood urban land demand that the focal grid needs to consider. When the neighborhood 
size r and grid size d change, the range that the scanning window covers will also change. At this point, the neigh-
borhood urban land demand that needs to be considered when predicting urban land demand inthe focal grid 
will change. In addition, this study also incorporates consideration of environment variables in each grid, which 
include necessary natural limiting variables and distance variables. Therefore, proximity also includes the proxim-
ity of each grid to important geographic features (expressed as the mean calculated within the grid). As the grid 
size d changes, the proximity to important geographic features also changes. Thence, we use a uniform scanning 
window to explore the impact of proximity on urban land demand prediction. The spatial range of the scanning 
window is determined by the following equation:

where S represents the length of the scanning window, which is used to represent the range of spatial proximity (unit: 
km). r and d represent the neighborhood size and grid size, respectively (see Table 2). The proximity represented by 
the scanning window is determined by both r and d, so the case when r = 1 is not consider.

Figure 7 illustrates the prediction accuracy of STRM across various scanning window sizes. The trend ob-
served is that as the scanning window size increases, prediction accuracy initially rises and then declines. This pat-
tern suggests that beyond a certain proximity threshold, the model begins to incorporate data that is less spatially 

(3)S = N × d = (2r + 1) × d

F I G U R E  7 Prediction accuracy of STRM model with different scanning window scales from 2000 to 2017. 
Point 1: r = 1, d = 3 km; point 2: r = 4, d = 1 km; point 3: r = 1, d = 5 km; point 4: r = 2, d = 3 km.
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correlated and more heterogeneous, adversely affecting the prediction outcomes. Additionally, the mean curve 
for Adjusted R2 in Figure 7 indicates that the prediction accuracy peaks at S = 9 for near-term years (2000–2009), 
and at S = 15 for long-term years (2010–2017). Also note that both S = 9 and S = 15 scenarios encompass two 
spatial scale parameters. However, both high-accuracy results (point 1 and point 3) occur at r = 1, reaffirming the 
result that smaller neighborhoods may yield higher prediction accuracy.

4.2 | Structure sensitivity analysis

4.2.1 | Simulation experiments design

To further investigate the impact of each spatiotemporal parameters and environment variables on model per-
formance, eight simulation experiments were designed in this study (refer to Table 3) to analyze the structure 
sensitivity of STRM. It has been demonstrated that incorporating a lag period can improve prediction accuracy. 
Therefore, we have uniformly set the lag period of the input data to 10 years. To validate the impact of the neigh-
borhood, we set up scenarios with (r = 1) and without the neighborhood (r = 0). Based on the analysis of spatial 
proximity, we divided the prediction period into near-term and long-term years, each corresponding to different 
optimal grid sizes (d = 3 and d = 5). Additionally, we set up scenarios without incorporating environment variables 
to facilitate the validation of their impact.

4.2.2 | Experiments simulation and analysis

Figure  8 illustrates changes in model accuracy for different simulated experiments outlined in Table  3. In 
comparison of the Adjusted R2 for near-term years, NRA and NRE consistently outperform WRA and WRE, 
with NRA consistently surpassing NRE, and WRA consistently exceeding WRE (Figure 8a). This indicates that 
excluding neighborhood information and incorporating environment variables can improve the performance 
of STRM in simulating urban land demand of near-term years. In the analysis of Adjusted R2 for long-term 
years, the inclusion of environment variables consistently enhances model performance (Figure 8b). However, 
when simulating years from 2013 to 2017, the consideration of neighborhood information significantly im-
proves model performance. Overall, the four experiments for near-term years (NRA, NRE, WRA, and WRE) 
and the two experiments for long-term years (WFA and WFE) exhibit relatively stable trends, while the two 

TA B L E  3 Simulation experiments design of model.

Experiments 
name Neighborhood

Prediction 
period

Grid size 
(d)

Environment 
variables Name explanation

WRA √ 2000–2009 3 km √ W is for including the 
neighborhood, and N 
is for eliminating the 
neighborhood.
R is the predict for the near 
term, and F is the predict 
for the long term.
A is for including 
environment variables, 
and E is for eliminating 
environment variables.

WFA √ 2010–2017 5 km √

WRE √ 2000–2009 3 km ×

WFE √ 2010–2017 5 km ×

NRA × 2000–2009 3 km √

NFA × 2010–2017 5 km √

NRE × 2000–2009 3 km ×

NFE × 2010–2017 5 km ×
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experiments without the consideration of neighborhood information for long-term years (NFA and NFE) show 
more significant fluctuations. Therefore, the exclusion of neighborhood information may be more suitable for 
simulating near-term years, while the inclusion of neighborhood information is more appropriate for simulating 
long-term years. Additionally, the inclusion of environment variables consistently improves model simulation 
accuracy across all periods.

Figure  9 illustrates the spatial distribution of urban land demand under different simulated experiments. 
Comparative analysis reveals that the four simulated experiments for near-term years consistently align with ob-
served values at the landscape level (Adjusted R2 > 0.88). Significantly, the simulation results of WRA and WRE 
exhibit a higher level of aggregation in the central urban area, resulting in larger deviations from actual values. In 
simulation of long-term years, the results of NFE and NFA depict a spatial concentration of urban land demand 
in the central urban area, which are more like the observed patterns. However, the WFA and WFE experiment 
leads to an over-aggregation of high-value areas in the central urban zone, due to the consideration of neighbor-
hood factors, which are significantly deviate from the actual distribution. In summary, considering environment 
variables will simulate a more diffused distribution of urban land demand, which is suitable for simulating devel-
opment zones or newly built urban areas. And the inclusion of neighborhood information tends to aggregate high-
value areas near existing urban land demand, making it more suitable for simulating large cities and metropolitan 
areas with a certain larger amount of urban development.

F I G U R E  8 Changes in model prediction accuracy in near-term years (a) and long-term years (b).

F I G U R E  9 Comparison of observed (Obs) values and simulated values in different simulation experiment. (a) 
Comparison of four predict results with observations for near-term year (2009); (b) Comparison of four predict 
results with observations for long-term year (2017).
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5  | MODEL COMPARISON AND IMPLEMENTATION

5.1 | Validation of STRM model

Based on the parameter and structure sensitivity analysis, optimized parameters of STRM for predictions in near-
term years and long-term years are identified (see Table 4). The predicted spatial distribution of urban land de-
mand for near-term years and long-term years using these parameters are compared with the observed values, 
as shown in Figure 10. Details on the simulation accuracy using these optimized parameters are documented in 
Appendix D.

Figure 10 highlights three zoomed-in areas, representing spontaneous growth, filling growth, and edge growth, 
respectively. In prediction results of near term years, all three cases of urban growth exhibit a high degree of simi-
larity (see Figure 10a). For predictions of long-term years, both spontaneous and edge growth patterns are similar 
to the observed values. Nevertheless, by integrating historical context, neighborhood dynamics, and proximity 
factors, the scanning window can capture spatiotemporal homogeneity across regions, which inevitably leads to 
proximity effect and distance decay phenomenon. As a result, the predicted urban land demand tends to con-
centrate around existing urbanized areas, a trend that becomes more pronounced with each subsequent year of 
rolling predictions. However, this clustering does not impair the model's predictive ability regarding future urban 
land demand, because consistent with previous studies, urban land demand is anticipated to shift towards more 
intensive use. This highlights the practicality of this study in utilizing historical context, neighborhood dynamics, 
and proximity considerations to accurately model future urban land demand.

5.2 | Comparison of different prediction models for urban land demand

To further validate the predictive capabilities of STRM, this study engages several widely recognized urban land 
quantity prediction models for a comparative analysis against STRM. For a standardized comparison framework, 
we selected models commonly integrated with CA, including CA-Markov (Daba & You,  2022), LR-CA (Zhang 
et al., 2015), RF-CA (Kamusoko & Gamba, 2015), and ANN-CA (Yang et al., 2016). Therefore, we employ Markov, 
Logistic Regression (LR), Random Forest (RF), and Artificial Neural Network (ANN) models to predict urban land 
quantity in Wuhan and compare these with the STRM model to evaluate performance. However, it's important to 
note that these widely used models lack the capability to make spatially explicit predictions of urban land quantity. 
They can only predict the total quantity of urban land in the study area annually. To ensure consistency in com-
parison, STRM uses the following equation to calculate the total quantity of urban land:

TA B L E  4 Optimized parameters of the STRM model for predicting urban land demand in different predict 
periods.

Prediction period Years
Lag period 
(k)

Neighborhood 
size (r)

Grid size 
(d) Description

Near-term years 2000–2009 10 1 3 Taking 1990–1999 
as the model training 
period, the urban land 
demand in the next 
10 years is predicted.

Long-term year 2010–2017 10 1 5 Taking 1990–1999 
as the model training 
period, the urban land 
demand in the next 11 
to 17 years is predicted.
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where Zi,t,d is the total quantity (area) of urban land in grid i with side length d in year t. qi is the predicted value of urban 
land demand in grid i. Sw is the area of the water body in the grid. And j represents the total number of regular grids in 
the study area. Different grid sizes will result in different total number of grids in the study area. At,d is the total amount 
of urban land in the study area in year t.

Conventional quantity prediction models were trained using data from 1990 to 1999 to predict urban land quan-
tity annually from 2000 to 2017. STRM also uses this same time series data for its predictions, employing Equation (5) 
to calculate the annual urban land quantity. Figure 11 illustrates a comparison of the predictions from all models 
against actual observations. The annual demand totals predicted by STRM align most closely with observed values, 
displaying minimal discrepancies in annual distributions. The RF model follows closely but ranks second, with its pre-
dictions showing significant deviations from observed values in later years. The Markov model exhibits a wide range 
in its predicted annual demand totals, with substantial variances from observed values, especially in later years. In 
contrast, the LR and ANN models produce more compact predictions that diverge from the observed values.

(4)Zi,t,d = qi ×
(
d2 − Sw

)

(5)At,d =

j∑
i=1

Zi,t,d

F I G U R E  10 Comparison of predicted and observed values of optimal parameters. (a) Comparison of predicts 
for near-term year (2009) with observed values; (b) Comparison of predicts for long-term year (2017) with 
observed values.
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In addition to Adjusted R2, we employ Mean Squared Error (MSE), Akaike Information Criterion (AICc), and 
Bayesian Information Criterion (BIC) to evaluate model accuracy and compare differences across models. Table 5 
displays the calculation results for various models under multiple evaluation metrics from 2000 to 2017. Consistent 
with the statistical outcomes illustrated in Figure 11, STRM consistently achieves a higher mean Adjusted R2, along 
with lower MSE, AICc, and BIC values. Although the RF model excels at processing nonlinear data, its performance is 
limited by small sample sizes and local relationships within the data, which complicates noise management and results 
in significant errors, second only to those of STRM. The Markov model, known for its stable quantitative prediction 
capabilities, experiences a decline in performance in later years, resulting in increased prediction errors. Furthermore, 
the LR and ANN models display notably low accuracy, with LR particularly recording a significantly high MSE. The 
complex nonlinear dynamics inherent in the urban development process hinder the performance of LR, making it less 
suitable for long-term urban land demand predictions. Additionally, ANN's reliance on limited training data restricts its 
ability to capture broader patterns in urban land demand development, negatively impacting its prediction accuracy.

5.3 | Predicting future urban land demand to 2035

Using 1990 as the base year, this study utilized urban land demand data from Wuhan spanning from 1990 to 
2017 as training data to predict urban land demand from 2018 to 2035 annually, using a lag period of 28 years 

F I G U R E  11 Descriptive statistics of results of different urban land demand prediction models.

TA B L E  5 Evaluation results of different urban land demand prediction models.

Model Average adjusted R2 Average MSE AICc BIC

STRM 0.5374 4279.0914 168.3863 149.8382

Markov −0.1864 20063.8064 207.3406 206.7924

LR −0.9467 80526.0907 242.9809 220.4561

RF 0.3911 10746.9212 189.7128 166.1879

ANN −0.5217 37648.5857 228.4212 211.7113
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(k = 28 ), a neighborhood size of 1 (r = 1), and a grid size of 5 km (d = 5 km). Figure 12c displays the prediction 
results, providing a visual representation of the development trends and spatiotemporal distribution patterns 
of urban land demand in Wuhan. Observational data from the years 2000 and 2017 were used to summarize 
these trends. Additionally, urban land demand and grid size calculations were employed to determine the total 
area and proportion of urban land in each administrative district of Wuhan for the years 2000, 2017, and 
2035. For each year, the top three regions by land proportion were highlighted with percentages, as shown in 
Figure 12a–c.

Figure 12 illustrates the continuous expansion of urban land in Wuhan from 2000 to 2035, with a distri-
bution pattern that is concentrated around Wuchang, Hankou, and Hanyang and gradually decreases towards 
the suburban areas. Urban land in these central areas becomes increasingly concentrated, highlighting a clear 
pattern of urban-suburban integration. An analysis of the urban land area and proportions in each region from 
2000 to 2035 reveals a consistent rise in total urban land, signifying the emergence of new development zones 
and suburbs as key growth areas. In 2000, the districts of Wuchang, Hongshan, and Jianghan exhibited the high-
est proportions of urban land. Located at Wuhan's core, these older urban districts have traditionally served 
as transportation and commercial hubs, as depicted in Figure 12a,d. As the urban expansion continues, newly 
developed urban areas stretch outward, reaching into the suburbs. By 2017, Hongshan, Caidian, and Jiangxia 
Districts had emerged as new urban growth areas, as shown in Figure 12b,e (Zhang et al., 2023). However, the 
central urban area of Wuhan, including districts like Wuchang and Jiang'an, is relatively constrained by limited 
land resources, leading to a gradual saturation of urban land demand. By 2035, it is anticipated that Jiangxia, 
Huangpi, and Caidian Districts will become new hubs of urban growth. These districts will serve as connectors 
between the central urban areas and suburban development, experiencing continual growth in urban land 
demand and further exemplifying spatial aggregation characteristics. This strategy is expected to significantly 
relieve population, transportation, and resource pressures in Wuhan's central city, aligning with the goals to 
establish a national-level central city.

F I G U R E  1 2 Observed urban land demand in 2000 and 2017, and predicted urban land demand in 2035. (a) 
Spatial observations of urban land demand in 2000; (b) Spatial observations of urban land demand in 2017; (c) 
Spatial predictions of urban land demand in 2035 under optimal parameters; (d–f) Urban land area of each region 
in Wuhan in 2000, 2017 and 2035.
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6  | DISCUSSION

6.1 | Impact of parameters on model performance

This study confirms that within the defined parameter range, increasing the lag period significantly boosts the 
prediction performance of the model, demonstrating the positive impact of enhancing feature quantity on model 
efficacy. However, the inflection points observed in specific parameter combinations suggest that these could 
be attributed to the lag period. For instance, Figure 13c,h,m show that as the lag period increases, the inflec-
tion point for overall prediction accuracy moves progressively forward. This suggests that incorporating more 
input data from extended lag periods allows for longer effective predictions by the model, thereby reducing the 
accuracy degradation typically associated with rolling predictions. Owing to the inertial mechanism of urban de-
velopment, development patterns often exhibit temporal similarities within certain periods (Kim et al., 2022; Tepe 
& Guldmann, 2017, 2020). The longer the lag period considered, the more effectively the model can learn the 
long-term trends of urban development and enhance prediction accuracy (Tepe & Safikhani, 2023). Additionally, 
as illustrated by Figure 13j, there is a noticeable deceleration in the decline of prediction accuracy around 2010. 
Following the promulgation of the “Master Plan of Wuhan City (2010–2020)” in 2010, which aimed to balance 
the renewal of the main urban area with the expansion of its edges, the model's consideration of neighborhood 
changes led to a concentration of urban land demand in existing urbanized areas. This adjustment not only cap-
tures shifts in policy but also aligns more closely with Wuhan's policy direction.

On the other hand, the concept of spatial dependence, also known as the spatial neighborhood effect, 
suggests that “nearby locations exhibit similar spatial processes” (Mahtta et  al.,  2022). These findings are 

F I G U R E  1 3 Model prediction accuracy under the combined influence of historical lag, neighborhood, and 
proximity. (a–o) Annual prediction accuracy under different spatiotemporal parameters.
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consistent with the results presented in this study. Additionally, the study identifies marginal effects of neigh-
borhood size on urban land demand prediction. As evidenced by Figure 13c,i,o, with increasing neighborhood 
size, the prediction accuracy of STRM initially improves and then diminishes. Furthermore, the range of input 
data, determined by the neighborhood and grid size, mirrors this accuracy trend, suggesting that the spatial 
dependence of urban land demand is influenced by the scale effect. Prediction outcomes at different scales 
exhibit distinct patterns and trends, underscoring the variability in spatial processes (Ke et al., 2010; Lavalle 
et al., 2011). Incorporating considerations of neighborhood and spatial scale into STRM helps capture the edge 
and scale effects inherent in urban land demand. This approach not only enhances the model's ability to max-
imize the homogeneity of urban land demand but also more accurately simulates the processes and patterns 
that align with actual urban development dynamics.

Spatial interaction is influenced by the distance attenuation effect, where proximity between two locations di-
rectly increases the likelihood of their interaction (Guo et al., 2022; Kang et al., 2013; Onnela et al., 2011). In urban 
growth simulation studies, spatial proximity is often a critical factor (Mustafa et al., 2018; Sapena & Ruiz, 2021). 
For example, proximity measures are typically incorporated as model inputs in the definition of transformation 
rules for CA models, representing distance features (Liao et al., 2014; Tsai et al., 2015). Thus, it is essential to 
consider both the range of neighborhood demand and distance-driven variables within the grid. Moreover, in 
selecting parameters for this study, natural variables must also be considered, as they often serve as constraints 
for urban growth. Additionally, Figure 13 illustrates that incorporating environmental variables can effectively en-
hance the prediction accuracy of STRM. Overall, the experiments in this study have demonstrated that historical 
development trends, neighborhood status, and proximity effectively characterize the spatiotemporal heteroge-
neity of urban land demand.

6.2 | Comparison of different mapping functions in STRM

This study further explored the robustness and generalizability of the rolling prediction process by comparing 
the deep forest model with random forest (RF) and artificial neural network (ANN), using identical parameters 
to extract spatiotemporal neighborhood information. Figure 14 illustrates the predictive accuracy of the three 
models under various spatial parameters, focusing on the maximum lag year and the inclusion of environmen-
tal variables. Overall, the deep forest model consistently outperforms the others, demonstrating the highest 
predictive accuracy and effectively handling increased non-stationarity in larger neighborhoods. This ability 
enhances its usefulness in determining optimal spatiotemporal parameters for different scenarios. While the 
RF model maintains good overall accuracy, its results are relatively uniform across different neighborhoods and 
grid sizes, which restricts its effectiveness in analyzing the impacts of temporal dependence and spatial scale 
effects. In contrast, the predictive accuracy of the ANN model is markedly unsatisfactory, characterized by 
instability and significant deterioration over longer prediction periods. Utilizing the sensitivity analysis method 
applied in this study, optimal spatiotemporal parameter combinations for the three models were identified and 
compared, as shown in the last column of Figure 14. The results reveal that the deep forest model not only 
exhibits high accuracy and stability but also outperforms the RF model, while the ANN model lags significantly 
behind. Consequently, the STRM, employing the deep from model for mapping, proves to possess strong robust 
and generalization capabilities.

6.3 | Scenario simulation potentials and model generalizability

The complexity of urban development has led an increasing number of model developers to consider specific 
urban development scenarios. As demonstrated in the simulation results in Appendix  E, by fine-tuning the 
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spatiotemporal parameters of STRM, modelers can effectively manage the spatiotemporal pattern of urban land 
demand, thus predicting it under various future urban development scenarios. Urban areas can generally be cat-
egorized by the degree of compactness into compact growth and dispersed growth. The size of the neighborhood 
in STRM influences the spatial compactness of future urban land demand, as illustrated in Figure S5 in Appendix E, 
larger neighborhood sizes tend to promote more compact growth.

Urban areas can also be historically classified into satellite urban areas (or new development zones) and those 
with a long history. Predicting future urban land demand for these categories can be managed by adjusting the lag 
period, as shown in Figure S6. Moreover, special urban development scenarios, such as those experiencing rapid 
population growth or high agglomeration, should be considered. Integrating spatialized population distribution 
data into environmental variables can help regulate the spatial distribution of urban land demand relative to these 
variables. It is important to note that STRM is open and flexible. This paper confirms the suitability of specific 
parameters and the effectiveness of environmental variables in enhancing STRM's performance. Looking ahead, 
we aim to acquire more robust data to enhance the model's feasibility for predicting demand in different urban 
development scenarios.

Numerous studies have highlighted the significance of distance variables in urban development (Seto & 
Fragkias, 2005; Vizzari & Sigura, 2015; Xu et al., 2007), and incorporating environmental variables generally en-
hances the prediction accuracy of STRM, as shown in Figure 13. Additionally, employing temporal series data 
to model urban development patterns has become a prevalent approach in urban growth studies (Ferdous & 
Bhat, 2013; Yang et al., 2020). While STRM relies on fitting historical data to predict urban land demand, unfore-
seen events such as natural disasters or significant demographic shifts, like those during COVID-19, can challenge 
the model's effectiveness. Reflecting this, STRM can adapt to special historical change trajectories, such as those 
driven by policy shifts, as indicated in Figure 13 around the year 2010. This adaptability not only allows for the 
capture of structural changes in urban development over time but also aids in refining parameters to better align 
with urban land demand. These studies lend theoretical and practical support to the feasibility and applicability 
of STRM.

To further validate STRM's effectiveness, an additional experiment was conducted in Jinan, Shandong 
Province, where economic growth and urban development have been somewhat slower compared to Wuhan. The 
same methodologies employed in Wuhan were applied to verify STRM's optimal parameters in Jinan. The results, 
detailed in Appendix F, show that STRM achieved an Adjusted R2 of 0.89 in 2017, with an average Adjusted R2 of 
0.94 from 2000 to 2017. This high level of prediction accuracy underscores the model's generalizability.

F I G U R E  14 Accuracy comparison of rolling predict results from 2000 to 2017 by deep forest (a), RF (b) and 
ANN (c).
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7  | CONCLUSION

This study introduces a dynamic spatiotemporal rolling prediction model (STRM) for year-by-year spatially explicit 
prediction of urban land demand. STRM integrates spatiotemporal lag effects and proximity considerations to 
effectively delineate the heterogeneity of urban land demand. This allows for dynamic analysis of parameter sen-
sitivity and proximity effects across various cities, providing a robust approach for identifying optimal spatiotem-
poral parameters for predicting urban land demand. Additionally, STRM's rolling prediction method relies solely on 
historical demand and static variables for future annual predictions, adeptly addressing the challenge of predicting 
future urban land demand without variable environment data or specific future characteristics.

Experimental results demonstrate that STRM effectively predicts urban land demand over the next 
17 years, achieving an average Adjusted R2 of 0.89 from 2000 to 2017, with a 2017 Adjusted R2 of 0.81. 
As groundbreaking research, STRM simplifies complex modeling and offers a higher resolution method for 
predicting spatiotemporal urban land demand. Analyses of parameter and structural sensitivity reveal that 
lag period, neighborhood size, and proximity significantly influence STRM performance, highlighting patterns 
that affect prediction accuracy. Prediction accuracy correlates positively with the length of the historical lag 
period, shows marginal effects from neighborhood size, and generally improves with the inclusion of environ-
ment variables.

STRM's predictions for Wuhan in 2035 suggest that urban land demand will continue to increase, with the central 
urban area nearing saturation. Jiangxia, Huangpi, and Caidian districts are identified as the city's new growth areas. 
This study fills a crucial gap in spatiotemporal prediction research for urban land demand, offering a practical tool that 
utilizes historical data and essential distance-driven variables to inform urban growth potential and effective land 
resource management. This insight supports future urban planning and addresses various urban challenges.

While this study confirms STRM's effectiveness within a limited parameter scope, future research should 
expand these parameters to verify the model's applicability across diverse urban contexts. Additionally, the limita-
tion of non-spatializable socioeconomic data might restrict the model's ability to predict urban land demand under 
varying urban development scenarios. Despite these areas for enhancement, STRM's novel approach provides a 
fresh strategy for examining urban development dynamics.
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